
Static Analysis – part 2

Control/Dataflow analysis
• Reason about all possible executions, via paths through a control flow

graph.
o Track information relevant to a property of interest at every program point.
o Including exception handling, function calls, etc

• Define an abstract domain that captures only the values/states relevant
to the property of interest.

• Track the abstract state, rather than all possible concrete values, for all
possible executions (paths!) through the graph.

2

Example
• Consider the following program:

3

x = 10;
y = x;
z = 0;
while (y > -1) {
x = x/y;
y = y-1;
z = 5;

}

• Use zero analysis to determine if y could be
zero at the division.

Zero/Null-pointer Analysis
• Could a variable x ever be 0?

o (what kinds of errors could this check for?)

• Original domain: N maps every variable to an integer.
• Abstraction: every variable is non zero (NZ), zero(Z), or maybe zero (MZ)

4

Zero analysis transfer
• What operations are relevant?

5

Zero analysis join
• Join(zero, zero) à zero
• Join(not-zero, not-zero) à not-zero
• Join(zero, not-zero) à maybe-zero
• Join(maybe-zero, *) à maybe-zero

6

Example
• Consider the following program:

7

x = 10;
y = x;
z = 0;
while (y > -1) {
x = x/y;
y = y-1;
z = 5;

}

• Use zero analysis to determine if y could be
zero at the division.

Reminder:
x: Join(NZ,NZ) à NZ
y: Join(MZ,NZ) à MZ
Z: Join(NZ, Z) à MZ

y > -1

x = 10;

x = 10;
y = x;
z = 0;
while (y > -1) {
x = x/y;
y = y-1;
z = 5;

}

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàNZ, z à Z

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàNZ, z à Z

x à NZ, yàNZ, z à Z

x à NZ, yàMZ, z à Z

x à NZ, yàMZ, z àNZ

9

Join!

Reminder:
x: Join(NZ,NZ) à NZ
y: Join(MZ,NZ) à MZ
Z: Join(NZ, Z) à MZ

y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàNZ, z à Z

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàMZ, z à MZ

x à NZ, yàNZ, z à Z

x à NZ, yàMZ, z à Z

x à NZ, yàMZ, z àNZ

Join!

10

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ
(end of iteration 2)

y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàMZ, z à MZ

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z àNZ

Join!

(end of iteration 3; nothing has changed)

11

y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàMZ, z à MZ

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z àNZ

Warning! Possible division by zero error!

12

Abstraction at work
• Number of possible states gigantic

o n 32 bit variables results in 232*n states
§ 2(32*3) = 296

o With loops, states can change indefinitely

• Zero Analysis narrows the state space
o Zero or not zero
o 2(2*3) = 26

o When this limited space is explored, then we are done
§ Extrapolate over all loop iterations

13

Termination intuition
• Can process instructions in whatever order we want, until the information

doesn’t change over the whole program.
o Use a special value as the initial state of all uncomputed states.

• A fixed point of a function is a data value v that a function maps to itself:
o f(v) = v

• The flow function is the mathematical function.
• The dataflow analysis state at each fix point is the data values.

14

The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or
undecidable (or multiple of these)

15

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

Computability theory says…
• Halting problem: the problem of determining whether a given program

will halt/terminate on a given input.
• A general algorithm that solves this problem is impossible.

o More specifically: it’s undecidable (it’s possible to get a yes answer, but not a no
answer).

o (sometimes you can use heuristics, but solving it generally for all programs is still
out.)

• The proof here is very elegant. But trust me: this problem is extremely
impossible.

16

OK, so?
• If you could always statically tell if any program had

a non-trivial property (never dereferences null,
always releases all file handles, etc, etc), you could
also generally solve the halting problem.

• …but the halting problem is definitely impossible.
• So: no static analysis is perfect. They will always

have false positives or false negatives (or both).
• All tools make tradeoffs.

17

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

18

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

Sound Analysis

All Defects

Complete
Analysis

Unsound
and
Incomplete
Analysis

19

Soundness and precision

20

Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)

Sound vs. Heuristic Analysis vs. Reality
• Heuristic Analysis

o FindBugs, coverity, checkstyle …
o Follow rules, approximate, avoid some checks to reduce false positives
o May report false positives and false negatives

• Sound Static Analysis
o Type checking, Not-Null, … (specific fault classes)
o Sound abstraction, precise analysis to reduce false positives

• But, in practice: languages are complicated, all tools need to make decisions
about how to model what’s going on/actual abstraction under the hood.

21

Example:
Null pointers

1.int foo() {
2. Integer x = new Integer(6);
3. Integer y = bar();
4. int z;
5. if (y != null)
6. z = x.intVal() + y.intVal();
7. } else {
8. z = x.intVal();
9. y = x;
10. x = null;
11. }
12. return z + x.intVal();
13.}

22

Integer x = new Integer(6);

int z;
if (y != null)

z = x.intVal() +
y.intVal();

z = x.intVal();
y = x;
x = null;

return z + x.intVal();

Integer y = bar();

What about that function call?
• Some simple options:

o If you’re worried about totally wacky control flow (exceptions, longjumps), they
can be modeled in wackier/more complicated control flow graphs.

o Ignore it by assuming that all functions return and tempering your claim:
“assuming the program terminates, the analysis soundly computes…”
§ Most people don’t bother; this is basically assumed.

• Interprocedural analyses exist, but are challenging to scale and beyond
the scope of this lecture.
o E.g., Build single big graph or abstract at method level; often manual annotations

to help

23

Exercise: File open/close
1. public class StreamDemo {

2. public static void main(String[] args) throws Exception {

3. OutputStream os = null;

4. InputStream is = new FileInputStream("in.txt");

5. int i;

6. try {

7. os = new FileOutputStream("out.txt");

8. System.out.println("Copying in progress...");

9. while ((i = is.read()) != -1) {

10. os.write(i);

11. }

12. if (os != null) {

13. os.close();

14. }

15. } catch (IOException e) {

16. e.printStackTrace();

17. }

18. is.close();

19. }

20. }

24

File open/close
• Abstract domain: file open, file closed, file maybe-open.
• Transfer and joins left as exercise to the reader…

25

Try-
Catch?

26

Design choices: representation and abstract domain
• What if we don’t model the try/catch?
• If we do…how should we include it?

27

28

Try-
Catch?

Design choices: representation and abstract domain
• What if we don’t model the try/catch?
• If we do…how should we include it?
• …what about non-IOExceptions?
• Broader question: How precisely should we model semantics?

o E.g., Of instructions, of conditional checks, etc.

29

Upshot: analysis as approximation
• Analysis must approximate in practice

o False positives: may report errors where there are really none
o False negatives: may not report errors that really exist
o All analysis tools have either false negatives or false positives

• Approximation strategy
o Find a pattern P for correct code

§ which is feasible to check (analysis terminates quickly),
§ covers most correct code in practice (low false positives),
§ which implies no errors (no false negatives)

• Analysis can be pretty good in practice
o Many tools have low false positive/negative rates
o A sound tool has no false negatives

§ Never misses an error in a category that it checks

30

Tools
• Most commercial “static analysis tools”, bug detectors, incl. FindBugs
• Examples: Nullness, atomicity, information flow, …
• Many compiler optimizations…
• Most of the “code quality” tools on GitHub marketplace.

31

Summary
• Static analysis: systematic automated analysis of the program source

without executing the program
• Structural analyses look for patterns in the code
• Control-flow analyses analyze all possible paths (global property)
• Data-flow analyses analyze possible (abstract) values of variables on all

paths
o Abstraction, transfer function, join
o Fix point computation; termination

• Analyses unsound or incomplete or both

32

