
Static Analysis – part 2



Control/Dataflow analysis
• Reason about all possible executions, via paths through a control flow 

graph.
o Track information relevant to a property of interest at every program point.
o Including exception handling, function calls, etc

• Define an abstract domain that captures only the values/states relevant 
to the property of interest. 

• Track the abstract state, rather than all possible concrete values, for all 
possible executions (paths!) through the graph.
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Example
• Consider the following program:
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x = 10;
y = x;
z = 0;
while (y > -1) {
x = x/y;
y = y-1;
z = 5;

}

• Use zero analysis to determine if y could be 
zero at the division. 



Zero/Null-pointer Analysis
• Could a variable x ever be 0? 

o (what kinds of errors could this check for?)

• Original domain: N maps every variable to an integer.
• Abstraction: every variable is non zero (NZ), zero(Z),  or maybe zero (MZ) 
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Zero analysis transfer
• What operations are relevant?
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Zero analysis join
• Join(zero, zero) à zero
• Join(not-zero, not-zero) à not-zero
• Join(zero, not-zero) à maybe-zero
• Join(maybe-zero, *) à maybe-zero

6



Example
• Consider the following program:
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x = 10;
y = x;
z = 0;
while (y > -1) {
x = x/y;
y = y-1;
z = 5;

}

• Use zero analysis to determine if y could be 
zero at the division. 



Reminder:
x: Join(NZ,NZ) à NZ
y: Join(MZ,NZ) à MZ
Z: Join(NZ, Z) à MZ



y > -1

x = 10;

x = 10;
y = x;
z = 0;
while (y > -1) {
x = x/y;
y = y-1;
z = 5;

}

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàNZ, z à Z

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàNZ, z à Z

x à NZ, yàNZ, z à Z

x à NZ, yàMZ, z à Z

x à NZ, yàMZ, z àNZ
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Join!

Reminder:
x: Join(NZ,NZ) à NZ
y: Join(MZ,NZ) à MZ
Z: Join(NZ, Z) à MZ



y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàNZ, z à Z

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàMZ, z à MZ

x à NZ, yàNZ, z à Z

x à NZ, yàMZ, z à Z

x à NZ, yàMZ, z àNZ

Join!
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x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ
(end of iteration 2)



y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàMZ, z à MZ

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z àNZ

Join!

(end of iteration 3; nothing has changed)
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y > -1

x = 10;

x = x/y

(exit)

y = y-1;

y = x;

x à NZ

x à NZ, yàNZ

x à NZ, yàMZ, z à MZ

z = 0;

x à NZ, yàNZ, z à Z

z = 5;

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z à MZ

x à NZ, yàMZ, z àNZ

Warning! Possible division by zero error!
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Abstraction at work
• Number of possible states gigantic

o n 32 bit variables results in 232*n states
§ 2(32*3) = 296

o With loops, states can change indefinitely

• Zero Analysis narrows the state space 
o Zero or not zero
o 2(2*3) = 26

o When this limited space is explored, then we are done
§ Extrapolate over all loop iterations
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Termination intuition
• Can process instructions in whatever order we want, until the information 

doesn’t change over the whole program.
o Use a special value as the initial state of all uncomputed states.

• A fixed point of a function is a data value v that a function maps to itself:
o f(v) = v

• The flow function is the mathematical function.
• The dataflow analysis state at each fix point is the data values.
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The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or 
undecidable (or multiple of these)
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"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“

Henry Gordon Rice, 1953



Computability theory says…
• Halting problem: the problem of determining whether a given program 

will halt/terminate on a given input.
• A general algorithm that solves this problem is impossible.

o More specifically: it’s undecidable (it’s possible to get a yes answer, but not a no
answer).

o (sometimes you can use heuristics, but solving it generally for all programs is still 
out.)

• The proof here is very elegant.  But trust me: this problem is extremely 
impossible.  
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OK, so?
• If you could always statically tell if any program had 

a non-trivial property (never dereferences null, 
always releases all file handles, etc, etc), you could 
also generally solve the halting problem. 

• …but the halting problem is definitely impossible.
• So: no static analysis is perfect.  They will always 

have false positives or false negatives (or both). 
• All tools make tradeoffs.
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Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)
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Sound Analysis: 
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect 
-> no false positives
typically underapproximated



Sound Analysis

All Defects

Complete 
Analysis

Unsound 
and 
Incomplete 
Analysis
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Soundness and precision
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Program state covered in actual execution

Program state covered by abstract
execution with analysis

unsound
(false negative)

imprecise
(false positive)



Sound vs. Heuristic Analysis vs. Reality
• Heuristic Analysis 

o FindBugs, coverity, checkstyle …
o Follow rules, approximate, avoid some checks to reduce false positives
o May report false positives and false negatives

• Sound Static Analysis
o Type checking, Not-Null, … (specific fault classes)
o Sound abstraction, precise analysis to reduce false positives

• But, in practice: languages are complicated, all tools need to make decisions 
about how to model what’s going on/actual abstraction under the hood.
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Example:
Null pointers

1.int foo() {
2. Integer x = new Integer(6);
3. Integer y = bar();
4. int z;
5. if (y != null)
6. z = x.intVal() + y.intVal();
7. } else {
8. z = x.intVal();
9. y = x;
10. x = null;
11. }
12. return z + x.intVal();
13.}
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Integer x = new Integer(6);

int z; 
if (y != null) 

z = x.intVal() + 
y.intVal();

z = x.intVal();
y = x;
x = null;

return z + x.intVal();

Integer y = bar();



What about that function call?
• Some simple options:

o If you’re worried about totally wacky control flow (exceptions, longjumps), they 
can be modeled in wackier/more complicated control flow graphs.

o Ignore it by assuming that all functions return and tempering your claim: 
“assuming the program terminates, the analysis soundly computes…”
§ Most people don’t bother; this is basically assumed.

• Interprocedural analyses exist, but are challenging to scale and beyond 
the scope of this lecture.
o E.g., Build single big graph or abstract at method level; often manual annotations 

to help
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Exercise: File open/close
1. public class StreamDemo {

2. public static void main(String[] args) throws Exception {

3. OutputStream os = null;

4. InputStream is = new FileInputStream("in.txt");

5. int i;

6. try {

7. os = new FileOutputStream("out.txt");

8. System.out.println("Copying in progress...");

9. while ((i = is.read()) != -1) {

10. os.write(i);

11. }

12. if (os != null) {

13. os.close();

14. }

15. } catch (IOException e) {

16. e.printStackTrace();

17. }

18. is.close();

19. }

20. }
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File open/close
• Abstract domain: file open, file closed, file maybe-open.
• Transfer and joins left as exercise to the reader…
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Try-
Catch?
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Design choices: representation and abstract domain
• What if we don’t model the try/catch?
• If we do…how should we include it?

27
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Try-
Catch?



Design choices: representation and abstract domain
• What if we don’t model the try/catch?
• If we do…how should we include it?
• …what about non-IOExceptions?
• Broader question: How precisely should we model semantics?

o E.g., Of instructions, of conditional checks, etc.
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Upshot: analysis as approximation
• Analysis must approximate in practice

o False positives: may report errors where there are really none
o False negatives: may not report errors that really exist
o All analysis tools have either false negatives or false positives

• Approximation strategy
o Find a pattern P for correct code

§ which is feasible to check (analysis terminates quickly),
§ covers most correct code in practice (low false positives),
§ which implies no errors (no false negatives)

• Analysis can be pretty good in practice
o Many tools have low false positive/negative rates
o A sound tool has no false negatives

§ Never misses an error in a category that it checks
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Tools
• Most commercial “static analysis tools”, bug detectors, incl. FindBugs
• Examples: Nullness, atomicity, information flow, …
• Many compiler optimizations…
• Most of the “code quality” tools on GitHub marketplace.
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Summary
• Static analysis: systematic automated analysis of the program source 

without executing the program
• Structural analyses look for patterns in the code
• Control-flow analyses analyze all possible paths (global property)
• Data-flow analyses analyze possible (abstract) values of variables on all 

paths
o Abstraction, transfer function, join
o Fix point computation; termination

• Analyses unsound or incomplete or both
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