Lecture 2: Metrics and
Measurement

17-313: Foundations of Software Engineering
Spring 2023
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Administrivia
e Slack
o Please add a profile picture.
o Ask questions in #general or #technical-questions. Use threads.
e Reading for Thursday:

e htips://www.seattletimes.com/business/boeing-aerospace/failed-
certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-
the-lion-air-crash/

e Optional: “Flight/Risk” on Amazon Prime, “Downfall: the case against Boeing” on Netflix
e Reminder:
o Front rows are ren-smoking screen-free


https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/
https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/
https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/

Learning Goals

e Use measurements as a decision tool to reduce uncertainty
e Understand difficulty of measurement; discuss validity of measurements
e Provide examples of metrics for software qualities and process

e Understand limitations and dangers of decisions and incentives based on
measurements

| S r SOF TWARE
RESEARCH

nislitoLe lon | Carnegie Mellon University

Schoel of Computer Science



Software Engineering
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Software Engineering: Principles,
practices (technical and non-technical)
for confidently building high-guality
software.
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CASE STUDY: AUTONOMOUS VEHICLES
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AV Software is
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How can we judge AV software quality (e.g. safety)?
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Test coverage
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Model Accuracy

e Train machine-learning
models on labelled data
(sensor data + ground
truth).

e (Compute accuracy on a
separate labelled test set.

e E.g. 90% accuracy implies
that object recognition is
right for 90% of the test
inputs.
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Failure Rate

e Frequency of crashes/
fatalities

e Per 1000 rides, per million
miles, per month (in the
news)
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Mileage
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Activity

Think of “pros” and “cons” for using various quality metrics to judge AV software.

o Test coverage

o Model accuracy

o Failure rate

o Mileage

o Size of codebase

o Age of codebase

o Time of most recent change
o Frequency of code releases
o Number of contributors

o Amount of code documentation



MEASUREMENT AND METRICS
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What is Measurement?

e Measurement is the empirical, objective assignment of hnumbers,
according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them. — Craner, Bond,
“Software Engineering Metrics: What Do They Measure and How Do We
Know?”

e A quantitatively expressed reduction of uncertainty based on one or
more observations. — Hubbard, “How to Measure Anything ...”

. = .
Carnegie Mellon University

nstitole lor
SOF TWARE - - e
I S r RESEARCH ‘ School of Co mputer Science



Software Quality Metrics

e |EEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical value
that can be interpreted as the degree to which the software possesses a
given attribute that affects its quality.”

e Metrics have been proposed for many quality attributes; may define own
metrics
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What software qualities do we care about? (examples)

e Scalability e |Installability

e Security e Maintainability

e Extensibility e Functionality (e.g., data
e Documentation integrity)

e Performance e Availability

e Consistency e Ease of use

e Portability

. .
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What process qualities do we care about? (examples)

e On-time release e Measure time, costs,

e Development speed actions, resources, and

e Meeting efficiency quality of work packages;

e (Conformance to processes compare with predictions

e Time spent on rework e Use information from issue

e Reliability of predictions trackers, communication

e Fairness in decision making networks, team structures,
etc...
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Everything is measurable

e |f X is something we care about, then X, by definition, must be detectable.

o How could we care about things like “quality,” “risk,” “security,” or “public image” if these things
were totally undetectable, directly or indirectly?

o If we have reason to care about some unknown quantity, it is because we think it corresponds
to desirable or undesirable results in some way.

e If X is detectable, then it must be detectable in some amount.

o If you can observe a thing at all, you can observe more of it or less of it

e If we can observe it in some amount, then it must be measurable.

Douglas Hubbard, How to Measure Anything, 2010
.
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EXAMPLES:
CODE COMPLEXITY
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Lines of Code

e Easyto measure

450 Expression Evaluator
2,000 Sudoku
100,000 Apache Maven
500,000 Git
3,000,000 MySQL
15,000,000 gcc
50,000.000 Windows 10
2,000,000,000 Google (MonoRepo)
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Normalizing Lines of Code

e Ignore comments and empty lines

e Ignore lines < 2 characters

e Pretty print source code first

e Count statements (logical lines of code)

® See aISO: CIOC for (i=0;i<100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i=0;
i <100;
i+=1

printf("hello");

22



Normalization per Language

C 1 1

C++ 2.5 1

Fortran 2 0.8

Java 2.5 1.5

Perl 6 6

Smalltalk 6 6.25
Python 6 6.5

o ot oo o 3005 OB e Al e g AL e Hion s 004)
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http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

Halstead Volume

e Introduced by Maurice Howard Halstead in 1977

e Halstead Volume =
number of operators/operands *
log2(number of distinct operators/operands)

e Approximates size of elements and vocabulary
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Halstead Volume - Example

e main() {
int a, b, ¢, avg;
scanf("%d %d %d", &a, &b, &c);
avg=(a+b+c)/3;
printf("avg = %d", avg);
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Cyclomatic Complexity

if (c1
e Proposed by McCabe 1976 T
}else {
e Based on control flow graph, measures linearly } 20
independent paths through a program if (c2) { 0
o ~=number of decisions yelse { 40

o Number of test cases needed to achieve branch )

coverage
M = edges of CFG — nodes of CFG + 2*connected components
“For each module, either limit cyclomatic complexity to [X] or

provide a written explanation of why the limit was exceeded.”
— NIST Structured Testing methodology
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Object-Oriented Metrics

e Number of Methods per Class

e Depth of Inheritance Tree

e Number of Child Classes

e Coupling between Object Classes

e (alls to Methods in Unrelated Classes
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Measurement scales

e Scale: the type of data being measured.

e The scale dictates what sorts of analysis/arithmetic is legitimate or
meaningful.

e Your options are:
o Nominal: categories
o Ordinal: order, but no magnitude.
o Interval: order, magnitude, but no zero.
o Ratio: Order, magnitude, and zero.

o Absolute: special case of ratio.
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Nominal/categorical scale

e Entities classified with respect to a certain attribute. Categories are jointly
exhaustive and mutually exclusive.

o No implied order between categories!

e (Categories can be represented by labels or numbers; however, they do not
represent a magnitude, arithmetic operation have no meaning.

e (Can be compared for identity or distinction, and measurements can be
obtained by counting the frequencies in each category. Data can also be
aggregated.

Application Purpose E-commerce, CRM, Finance
Application Language Java, Python, C++, C#

Fault Source assignment, checking, algorithm, function, interface, timing 29



Ordinal scale

e Ordered categories: maps a measured attribute to an ordered set of values, but no
information about the magnitude of the differences between elements.

e Measurements can be represented by labels or numbers, BUT: if numbers are used,
they do not represent a magnitude.

o  Honestly, try not to do that. It eliminates temptation.

e You cannot: add, subtract, perform averages, etc (arithmetic operations are out).

e You can: compare with operators (like “less than” or “greater than”), create ranks for the
purposes of rank correlations (Spearman’s coefficient, Kendall’s T).

Application Complexity Very Low, Low, Average, High, Very High

Fault Severity 1 — Cosmetic, 2 — Moderate, 3 — Major, 4 — Critical

30



Interval scale

e Has order (like ordinal scale) and magnitude.

o The intervals between two consecutive integers represent equal amounts of the attribute being
measured.

e Does NOT have a zero: 0 is an arbitrary point, and doesn’t correspond to the
absence of a quantity.

e Most arithmetic (addition, subtraction) is OK, as are mean and dispersion
measurements, as are Pearson correlations. Ratios are not meaningful.

o Ex: The temperature yesterday was 32 C, and today is 16 C. Was it twice as warm yesterday?

e Incremental variables (quantity as of today — quantity at an earlier time) and
preferences are commonly measured in interval scales.

31



Ratio scale

e An interval scale that has a true zero that actually represents the absence of
the quantity being measured.

e All arithmetic is meaningful.

e Absolute scale is a special case, measurement simply made by counting the
number of elements in the object.

o Takes the form “number of occurrences of X in the entity.”

Project Effort Real numbers

Software Complexity Cyclomatic complexity

32



Summary of scales

Scale level Examples Opcrators  Possible analyscs
Ouanittative scales
Ratio size, time, cost +. /. log, 7 peomerrie mean, cocfficient of vari-
ation
Interval temperature, marks, t, mean, variance, comrelation, lin
judgement  expressed gar regression, analysis of variance
on rating scales TANOVA)L ...
Chucrlitative scales
Ordinal - complexily classes < s median. rank  comrelation. ordinal
regress1on
Nominal feature availability =, frequencies, mode, contingency ta-
hles
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WHY MEASURE?
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Measurement for Decision Making

e Fund project?

e More testing?

e Fast enough? Secure enough?

e Code quality sufficient?

e Which feature to focus on?

e Developer bonus?

e Time and cost estimation? Predictions reliable?
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Trend analyses

Test Result Trend

count

PV R R R Y EYTREVE

(lust show failures) ernlarge
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Benchmarking against standards

e Monitor many projects or many modules, get typical values for metrics
e Report deviations

150 °
Most projacts have
: 00 similar test to code
2 rztioe
3
x
- 8D 7 5
J
#rojects with much
lower test to code
ratics
50
20C0 1000 0O 1,000 2,000 300C 4CCO 5000 6000 7.000 8,000 €,000
https://semmle.com/insights/ new lines of code

37


https://semmle.com/insights/

Antipatterns in effort estimation

e |IBM in the 60’s: Would account in the
“nerson-months” m‘:,\l\y}mh

e.g. Team of 2 working 3 months = 6 ks b e g
person-months ’
e LoC ~ Person-months ~ $$3

e Brooks: “Adding manpower to a late
software project makes it later.”

Ermdaned P Ercoln, Jr
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MEASUREMENT IS DIFFICULT
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The streetlight effect

e A known observational bias.

e People tend to look for
something only where it’s
easiest to do so.

o |f you drop your keys at
night, you’ll tend to look for it
under streetlights.

Carnegie Mellon University
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What could possibly go wrong?

e Bad statistics: A basic misunderstanding of
measurement theory and what is being o .
measured. g . ?*wm

e, > - G‘

e Bad decisions: The incorrect use of
measurement data, leading to unintended
side effects.

The Flow of Averages:
A stabistician drowns while
crossing a river that is enly
three feet deep, on average.

e Bad incentives: Disregard for the human
factors, or how the cultural change of taking
measurements will affect people.
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Making inferences itpixked. com/s52/

T USED T© THINK THEN I TOOK A | | SOUNDS LKE T™HE
CORRELATION IMPUED | | STATISTICS CLASS. Cuass HELPED.

CAUSPTION. ) NOW L DON'T VELL, rﬂmee.

o etlreleg

o Provide a theory (from domain knowledge, independent of data)

o  Show correlation

o Demonstrate ability to predict new cases (replicate/validate)
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Survivorship Bias

We tend to only look at things tha

o Financial Markets _ |
. ’:'I_ff: :‘.‘g“.‘:?

o Successful people ]
' v

o  WWII aircraft

McGeddon, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
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Spurious Correlations
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Simpson’s Paradox

0.250 (12/48) 0.314 (183/582)  0.310 (195/630)
0.253 (104/411)  0.321 (45/140) 0.270 (149/551)

o Measurements can say opposite things depending on how you group them!
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Confounding variables

Coffee .
. « ¥ Cancer
consumption
A
v
Smoking rrrereeennd » Associations

» Causal relationship

o If you look only at the coffee consumption — cancer relationship, you can get very misleading
results

o Smoking is a confounder
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Coverage is not strongly correlated with test suite
effectiveness

Authors: 5 Laura inozervseve, @ eid Holmes Authors info & Atfliazions

ICSE 2014 Froceedings of the 36th ntemational Conference on Saftwzre Engineering « May 2014 + Pages 435~

445 « hupeyjdoi.argNan 4 5/256322525638271

“We found that there is a low to moderate correlation between coverage and
effectiveness when the number of test cases in the suite is controlled for.”
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Measurements validity

e (Construct validity — Are we measuring what we intended to measure?

e Internal validity — The extent to which the measurement can be used to
explain some other characteristic of the entity being measured

e External validity — Concerns the generalization of the findings to contexts and
environments, other than the one studied
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Measurements reliability

e Extent to which a measurement yields similar results when applied multiple
times

e (oal is to reduce uncertainty, increase consistency

e Example: Performance

o Time, memory usage

o Cache misses, /O operations, instruction execution count, etc.
e Law of large numbers

o Taking multiple measurements to reduce error

o Trade-off with cost

50
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McNamara fallacy

e Measure whatever can
be easily measured.

e Disregard that which cannot be measured easily.
e Presume that which cannot be measured easily is not important.
e Presume that which cannot be measured easily does not exist.
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The McNamara Fallacy

e There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and functional
relationship is known to high accuracy. This often leads to the omission of
admittedly highly significant factors (most of the “intangibles” influences on
decisions) because these are unmeasured or unmeasurable. To omit such
variables is equivalent to saying that they have zero effect... Probably the only
value known to be wrong...

o J. W. Forrester, Industrial Dynamics, The MIT Press, 1961
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Discussion: Measuring usability

e Metrics
o Time to perform task? -
o App load time? :
o Discovering menu options?

e Measurements

O

O

O

SOFTWARE

Amount of documentation
Stars on app store
Telemetry

Surveys, interviews, controlled
experiments, expert judgment h

A/B testing
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METRICS AND INCENTIVES

. . = s
nislitoLe lon Carnegie Mellon University

SOF TWARE - - e
I S r RESEARCH School of Co mputer Saence



Goodhart’s law: “When a measure becomes a target, it ceases to be a good measure.”

OUR GOAL 1510 WRITE 1 HCPL ™M GONNA
GUGFREE SOFTWARE THIS WRITE ME A
T'LL PAY A TEN-DOLLAR

BONUS FOR EVERY BUG
YOU FIND AND FIR,

-l |
3,

DRIVES MNEW MINLVAN
THE RIGHT  THLS AFTER-
BEHAVIOR. NOCN!

1-"",: € 1008 United Fasture Gyrdissne, Ira (ANE)

S A s E-mal: SCOTTADAMSRADL COM

http://dilbert.com/strips/comic/1995-11-13/
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Productivity Metrics

e Lines of code per day?
o Industry average 10-50 lines/day
o Debugging + rework ca. 50% of time
e Function/object/application points per month
e Bugs fixed?
e Milestones reached?
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Incentivizing Productivity

e What happens when developer bonuses are based on

o Lines of code per day?

o Amount of documentation written?

o Low number of reported bugs in their code?
o Low number of open bugs in their code?

o High number of fixed bugs?

o Accuracy of time estimates?
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Most software metrics are controversial

Usually only plausibility arguments, rarely rigorously validated
Cyclomatic complexity was repeatedly refuted and is still used

“Similar to the attempt of measuring the intelligence of a person in terms of the weight
or circumference of the brain”

Use carefully!
Code size dominates many metrics

Avoid claims about human factors (e.g., readability) and quality, unless
validated

Calibrate metrics in project history and other projects
Metrics can be gamed; you get what you measure

59



Summary

e Measurement is difficult but important for decision making

e Software metrics are easy to measure but hard to interpret, validity often not
established

e Many metrics exist, often composed; pick or design suitable metrics if needed
e Careful in use: monitoring vs incentives
e Strategies beyond metrics
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Questions to consider

e What properties do we care about, and how do we measure it?

e What is being measured? Does it (to what degree) capture the thing you care
about? What are its limitations?

e How should it be incorporated into process?
e What are potentially negative side effects or incentives?
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