
Architecture:
Modularity & Microservices

17-313 Fall 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Rohan Padhye

https://cmu-313.github.io/


• Project 2C: Second sprint is on!

• Teamwork assessments due every Friday

• Reminder: Midterm on October 8th in class

• We will release sample / practice exams next week

Administrivia



Smoking Section

• Last two full rows

3



Learning Goals

• Contrast monolithic vs. modular software architectures.

• Enumerate various types of modularity including plug-in 

architectures, service-oriented architectures, and 

microservices.

• Reason about tradeoffs of modularity: how to benefit from 

separation of concerns and what pitfalls to be wary of.



Monolithic vs. Modular architecture



Monolithic

Modular



Monoliths are the “default”

• Git (command-line interface)

• Calculator app

• PDF Reader

• Mobile weather app

• Grading web app

• Stock exchange

• Music/podcast player (e.g. Spotify)

• Video calling app (e.g. Zoom)

• Self-driving car (e.g. Apollo)



Modularity comes in many ways

• Plug-in architectures
• Distinct code repositories, linked-in to a monolithic run-time
• Examples:

• Linux kernel modules 
• Themes in NodeBB, WordPress
• Language packs for Visual Studio, IntelliJ, Sublime Text

• Separates development, but runs as “one”. 

• Service-oriented architectures
• Distinct processes communicating via messages (e.g., Web browsers)
• Separates run-time resource management and failure / security issues. 

• Distributed micro-services
• Independent, autonomous services communicating via web APIs
• Separates almost all concerns



NodeBB Themes



NodeBB Themes

• Activity: Write down 2 pros and 2 cons of the NodeBB
theme architecture

• Work in groups of 3-4

• Write down names and Andrew IDs!



Service-oriented architecture

Before going into “micro-services”, let’s discuss…



Case Study: Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-threaded browser in single process

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


https://webperf.tips/tip/browser-process-model/



MICROSERVICES



“Small autonomous services that work well 

together” 

Sam Newman



Microservices



Netflix Microservices
• User subscriptions

• Banner Ad

• Popular Shows

• Trending Now

• Continue Watching

• My List (saved shows)

• Notifications

• Show info

• Trailers metadata

• Episodes metadata

• Video content
2
8

(as of 2016)



2
9



Online Boutique: Guess some microservices

3
0

https://cymbal-shops.retail.cymbal.dev/



Online Boutique: Microservice Architecture

3
1

https://cymbal-shops.retail.cymbal.dev/



Service Description

frontend Exposes an HTTP server to serve the website. Does not require signup/login and generates session IDs 

for all users automatically.

cartservice Stores the items in the user's shopping cart in Redis and retrieves it.

productcatalogservice Provides the list of products from a JSON file and ability to search products and get individual products.

currencyservice Converts one money amount to another currency. Uses real values fetched from European Central Bank.

paymentservice Charges the given credit card info (mock) with the given amount and returns a transaction ID.

shippingservice Gives shipping cost estimates based on the shopping cart. Ships items to the given address (mock)

checkoutservice Retrieves user cart, prepares order and orchestrates the payment, shipping and the email notification.

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice


Scalability

3
3

Source: http://martinfowler.com/articles/microservices.html



Data Management and Consistency

3
4

Source: http://martinfowler.com/articles/microservices.html



Deployment and Evolution

3
5

Source: http://martinfowler.com/articles/microservices.html



Conway’s Law

“Products” not “Projects”

“Any organization that designs a system (defined 
broadly) will produce a design whose structure is a 

copy of the organization's communication structure.”



Advantages of Microservices

• Better alignment with the organization

• Ship features faster and safer

• Scalability

• Target security concerns

• Allow the interplay of different systems and languages, no 

commitment to a single technology stack

• Easily deployable and replicable

• Embrace uncertainty, automation, and faults



Microservice challenges

• Too many choices

• Delay between investment and payback

• Complexities of distributed systems
• network latency, faults, inconsistencies

• testing challenges

• Monitoring is more complex

• More system states

• More points of failure

• Operational complexity

• Frequently adopted by breaking down a 
monolithic application



Microservices overhead


	Slide 1: Architecture: Modularity & Microservices
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Monolithic vs. Modular architecture
	Slide 6
	Slide 7: Monoliths are the “default”
	Slide 8: Modularity comes in many ways
	Slide 9: NodeBB Themes
	Slide 10: NodeBB Themes
	Slide 11: Service-oriented architecture
	Slide 12: Case Study: Web Browsers
	Slide 13: Multi-threaded browser in single process
	Slide 14: Multi-process browser with IPC
	Slide 15: Service-based browser architecture
	Slide 16: Service-based browser architecture
	Slide 17: Service-based browser architecture
	Slide 24
	Slide 25: MICROSERVICES
	Slide 26
	Slide 27: Microservices
	Slide 28: Netflix Microservices
	Slide 29
	Slide 30: Online Boutique: Guess some microservices
	Slide 31: Online Boutique: Microservice Architecture
	Slide 32
	Slide 33: Scalability
	Slide 34: Data Management and Consistency
	Slide 35: Deployment and Evolution
	Slide 36: Conway’s Law
	Slide 37: Advantages of Microservices
	Slide 38: Microservice challenges
	Slide 39: Microservices overhead

