Software Analysis Tools

17-313 Fall 2024
Foundations of Software Engineering
https://cmu-313.github.io
Michael Hilton and Rohan Padhye

D Software and Societal Carnegie
Systems Department Mellon

Universi

https://cmu-313.github.io/

Learning Goals

« Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

« Examine several popular analysis tools and understand their
use cases

- Understand how analysis tools are used in large open-source
software

Carnegie

D Software and Societal
Systems Department Mellon

Universi

Administrivia

« Midterm exam next week!
« One page (two-sided) of hand-written notes allowed in class.

 Practice exams released on website.
 Not all topics are the same as previous semesters/years

« Midterm review session tomorrow (Friday, Oct 4t") at 5pm TCS 358
- Read old exams and come with questions or attempts prepared

* Project P2C (Second Sprint + Reflections) due next Thu, Oct 10t

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

What are Program Analysis Tools?

src/controllers/accounts/posts.js L|;|
T. Show 135 more lines
136 .. 1,
137 .. 1.
138 . };
139
140 .. postsController.getBookmarks = async function (req, res, next) {
141 . awalt getPostsFromUserSet('account/bookmarks', req, res, @ next);
. .
Stat I C An a | ys |S This function expects 3 arguments, but 4 were provided.
142 . b
143
144 . postsController.getPosts = async function (req, res, next) {
145 . [) await getPostsFromUserSet('account/posts', reg, res, next);
146 . b

COVERALLS 66 Auth.reloadRoutes = async function (parans) {

67 loginStrategies. length = 0;
« 68 const { router } = params;
69
* 70
vz 7 if (plugins.hooks. hasListeners(*action:auth.overrideLogin')) {
72 winston.warn(* [authentication] Login override detected, skipping l
k) login strategy.');
ﬂ 73 plugins.hooks. fire('action:auth.overridelogin');

74 } else {

. I .
Dynamic Analysis i ; A ——

controllers.authentication. locallogin));

76)

77

78 P bea then

79 passport.use('core.api', new BearerStrategy({}, Auth.verifyToken));

80

81 Additiona 3 plug

82 try {

83 loginStrategies = await plugins.hooks.fire('filter:auth.init’,
loginStrategies);

84 } catch (err) {

85 winston.error(" [authentication] ${err.stack}');

86 ¥

87 loginStrategies = loginStrategies || [;

88 loginStrategies. forEach((strategy) => {

83 Software and Societal Carnegie

Systems Department Me!lon '
University

Activity: Analyze the Python program statically

def n2s(n: int, b: int):
if n <=0: return 'O’

r

while n > O:

u=n%b
if u>=10:
u = chr(ord('A") + u-10)
n=n//b
r=str(u) +r

returnr

S3D

Software and Societal
Systems Department

What is the type of variable u?

Will the variable 'u” be a
negative number?

Will this function always return
a value?

Will the program divide by zero?

Will the returned value ever
contain a minus sign -’?

Carnegie
Mellon
Universi

What static analysis can and cannot do

» Type-checking is well established
« Set of data types taken by variables at any point
« Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g. Python)

Checking for problematic patterns in syntax is easy and fast
+ Isthere a comparison of two Java strings using "=="7
« Isthere an array access "ali] without an enclosing bounds check for "i*?

Reasoning about termination is impossible in general
« Halting problem

Reasoning about exact values is hard, but conservative analysis via abstraction is possible
« Isthe bounds check before "a[i]" guaranteeing that "i" is within bounds?
« Canthe divisor ever take on a zero value?
« Could the result of a function call be "42°?
« Will this multi-threaded program give me a deterministic result?
* Be prepared for “"MAYBE"

Verifying some advanced properties is possible but expensive
« Cl-based static analysis usually over-approximates conservatively

Software and Societal Carnegie
33 Mellon

Systems Department . .
Universi

The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete, unsound, undecidable, or
a combination thereof

“Any nontrivial property about the language recognized by a Turing

machine is undecidable.”
Henry Gordon Rice, 1953

D Software and Societal Carnegie
Systems Department ‘s .

Static Analysis is well suited to detecting certain defects

 Security: Buffer overruns, improperly validated input...
« Memory safety: Null dereference, uninitialized data...
« Resource leaks: Memory, OS resources...

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

Static Analysis: Broad classification

* Linters
 Shallow syntax analysis for enforcing code styles and formatting

 Pattern-based bug detectors

 Simple syntax or API-based rules for identifying common
programming mistakes

« Type-annotation validators
« Check conformance to user-defined types
« Types can be complex (e.g., “Nullable”)

 Data-flow analysis / Abstract interpretation)

- Deep program analysis to find complex error conditions (e.g., "can
array index be out of bounds?”)

Carnegie

D Software and Societal
Systems Department Me!lon '
Universi

Static analysis can be applied to all attributes

* Find bugs

 Refactor code

« Keep your code stylish!

* |[dentify code smells

Measure quality

* Find usability and accessibility issues

- |[dentify bottlenecks and improve performance

D Software and Societal Carnegie
Systems Department Mellon

Universi

Activity: Analyze the Python program dynamically

def n2s(n:int, b: int): 1. What is the type of variable “u

if n<=0:return '0' during program execution?

r=" i i ..)
2. Did the variable 'u ever contain a

while rl> O: negative number?
IL:C; :j)ll?): 3. For how many iterations did the
u = chr(ord('A") + u-10) while loop execute?
n=n//b 2. Was there ever be a division by
r=str(u)+r zero?
returnr s. Did the returned value ever

contain a minus sign -’?

print(n2s(12, 10))

D Software and Societal Carnegie
Systems Department Mellon

Universi

Dynamic analysis reasons about program
executions

« Tells you properties of the program that were definitely observed

« Code coverage

« Performance profiling
 Type profiling

» Testing

* In practice, implemented by program instrumentation

 Think “Automated logging”
« Slows down execution speed by a small amount

Carnegie
Mellon

Universi

D Software and Societal
Systems Department

Static Analysis vs Dynamic Analysis

* Requires only source code * Requires successful build + test inputs

* Conservatively reasons about all possible * Observes individual executions
inputs and program paths

* Reported warnings may contain false * Reported problems are real, as observed by a
positives withess input

. . * Can only report problems that are seen. Highly
e Can report all warnings of a particular class dependent on test inputs. Subject to false
of problems negatives

* Advanced techniques like symbolic execution
e Advanced techniques like verification can can prove certain complex properties, but
prove certain complex properties, but rarely rarely run in Cl due to cost
run in Cl due to cost

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

Static Analysis

D Software and Societal Carnegie
Systems Department Mellon

Universi

Tools for Static Analysis

0 cs %, K

ﬂ snyk sonarqube\\\

Static analysis is a key part of continuous integration

</>
N

R B P

COMMIT
& ®O— 00— 000
’ BUILD UNIT INTEGRATION
TESTS TESTS
&

CI PIPELINE

RELATED CODE

g Iravis Cl

-

D Software and Societal Carnegie
Systems Department Mellon

Universi

Static analysis used to be an academic amusement; now
it's heavily commercialized

GitHub acquires code analysis tool Semmle Herepeee Senchess News

Frederie Lardinols sl 1 120pm 0T sepienber e 201 H Types Q search for apps and actions Snyk Secures $1 5OM5 Snags $1 B
pps Valuation

Actions
Build on your werkflow with 2pps that integrate with GitHub,
Share this article
306 results filtered by | Apps | x Sydney Sawaya | Assoclate Editor
Categories
January 21, 2020 1:12 PM 9 O @ o @
API management S Zube & WhiteSource Bolt ¢
S Aglle project management that lets the entire Detect open source vulnerabllities in real
Chat eam work with developers on GitHub time with suggested fixes for quick
remediation
Code quality
p Crowdin & Slack + GitHub
Code review & Agie localizaton for your projects Connect your code without leaving Slack

Continuous Integration

Dependency management ar BackHub @ - GitLocalize @)

Reliable GitHub repository backup, set up In Continuous Localization for GitHub projects
Deployment fminutes
IDEs Codacy @ . Code Climate)

Automated code reviews to help developers Automated code review for technical debt
Learning ship better software, faster and fest coverage

Localization
ts. Click a checkbox to

p
r Semaphore) Flaptastic &
. o Test and deploy at the push of a bution Manage flaky un
instantly disable any test on all branches

Works with your current test suite
Monitoring

Project management DeepScan ()
Advanced static analysis for automatically

Publishing finding runtime errors in JavaScript code

Depfu
Automated dependency updates done right

Snyk, a developer-focused security startup that and Identifies vulnerabilities in open source applications,

° announced a $150 million Series C funding round today. This brings the company'’s total Investment to
G It H u b $250 million alongside reports that put the company's valuation at more than $1 billion.

Software and Societal Carnegle

Systems Department Mellon '
Universi

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDEs

c++ Cppcoreguidelines.cpp

// To enable only C++ Core Guidelines checks
2 // go to Settings/Preferences | Editor | Inspections | C/C++ | Clang-Tidy
3 // and provide: -x,cppcoreguidelines—* in options

void fill_pointer(intx arr, const int num) {
6 for(ipt i = 0; i < num; ++i) {
7 arr[il = 0;
8 1
Do not use pointer arithmetic

void fill_array(int ind) {
12 int arr(3] = {1,2,3};
arr[ind] = ©;

}
void cast_away_const(const int& magic_num)
/ {
18 const_cast<int&>(magic_num) = 42;
}

D Software and Societal
Systems Department

high| 10 medium | 4 low
§ high | @ medium

| 56 medium | 142 low

https://clang-analyzer.llvm.org

eclipse

s-site Scripting (XSS)

he HTTP

L page returned to the user.

Carnegie

Mellon
Universi

What makes a good static analysis tool?

Static analysis should be fast
« Don't hold up development velocity
« This becomes more important as code scales

Static analysis should report few false positives
« Otherwise developers will start to ignore warnings and alerts, and quality will decline

Static analysis should be continuous
 Should be part of your continuous integration pipeline
 Diff-based analysis is even better -- don’t analyze the entire codebase; just the changes

Static analysis should be informative

« Messages that help the developer to quickly locate and address the issue
« Ideally, it should suggest or automatically apply fixes

33 D Software and Societal https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/ful ltext Carnegle

Systems Department Me!lon '
Universi

(1) Linters: Cheap, fast, and lightweight static source analysis

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

Use linters to enforce style guidelines

Don't rely on manual inspection during code review!

;\S‘“‘ & RuboCop @

) " @, python’

(
= Java

Software and Soc t | https://checkstyle.sourceforge.io/ Carnegie
Systems D epar tm Mellon

Universi

Linters use very “shallow” static analysis
to enforce formatting rules

« Ensure proper indentation

* Naming convention

* Line sizes

* Class nesting

« Documenting public functions

« Parenthesis around expressions
* What else?

Software and Soc t | Carnegie
SSD Systems De epar artme Mellon

Universi

Use linters to improve maintainability

* Why? We spend more time reading code than writing it.
* Various estimates of the exact %, some as high as 80%

« Code is ownership is usually shared
* The original owner of some code may move on

« Code conventions make it easier for other developers to
quickly understand your code

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

Use Style Guidelines to facilitate communication

Python

e python

About

Tweets vy aepsr
@ Python Software Foundation &

We encourage you to contibute o our
communiy’s knowledge by taking part in
he oficial Pyon Susvey 2020, organized
s1ip between @

Share, learn, and win pizes! The
survey should only take you about 10 min.
o complete. surveys etbrans.comisc12

Python Developers S...

]3] Join and contute 1oL

@, Python Software Foundation &
Hey, Pythonistas, have you aready joined

the Python Developers Survey 20207

veys jetbrains.cony

The Python Software Foundation

Downloads Documentation Community Success Stories News

Python % Python Developer's Guide) PEP Index PEP 8 - Style Guide for Python Code

PEP 8 -- Style Guide for Python Code

PEP: 8
Title: Style Guide for Python Code
Author: Guido van Rossum <guido at python.org, Barry Warsaw <barry at python.org>, Nick

gmail.com>
Status Active
Type: Process
Created: 05-Jul-2001

Post- 05-Jul-2001, 01-Aug-2013

Contents

istency is the Hobgoblin of Little

Style Guidelines

This document collects the emerging principles, comventions, absiractions, and best practices for writing

Rust code.

Since Rust is evolving at a rapid pace, these guidelines arc prel . The hope is that writing them

down explicitly will help drive discussion, consensus and adopti

Whenever feasible, guidelines provide spesific examples from Rust's standard libraries,

Guideline statuses

uldeline has a siatus:

® [FINME]: Marks places where there is more work to be done. In some cases, that just means going

through the RFC process,
» [FIXME SNNNNNJ: Like [FIXME], but links to the issue tracker.

® [RFC #NNNNJ: Marks accepted guidelines, linking 10 the rust-lang RFE etablishing them.

Guideline stabilization

One purpose of these guidelines is to reach decisions on a number of cross-cutting AP and stylistic

choices. Discussion and develapii

of the guidelines will happen primarily on st

g org, using elines category. Discussion can also eccur on the guideline

Guidelines that are under development or discussion will be marked with the status [FIXME]. with a

link t0 the issuc tracker whea appropriate.

Once a concrele guideline is ready o be proposcd, it should be filcd as an FIXME: nceds RFC. If the

RFC

lines will be updated to match, and will include the

> document

What's in this document

"This document is broken into four parts:

® Style provides a sct of rules govers omventions, whitespace, and other stylistc issucs.

® Guidelines by Rust feature places the focus on each of Rust's fean

2 from expre:

and working the way out towand erates, dispensing guidelines relevant to

s, The rest of the document proceeds by cross-cutting topic, starting

Rust discusses the forward-compatibility hazards, especially those that

interast with the pre-1.0

ry stabilization process.

The
Chicago
Manual

of Style

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

S35

hnps!ﬁ,‘!”,‘ ChcangaD a QEI”E le hIIDS“gQQgEgIh bQ{Snng de£ hIIQS‘“MMﬂM D!!IhQD Qg{dg!z%ps{mp-()!)()g

Software and Societal

Systems Department

Carnegie
Mellon
Universi

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Take Home Message:

Style is an easy way to improve readability

« Everyone has their own opinion (e.g., tabs vs. spaces)

« Agree to a convention and stick to it
« Use continuous integration to enforce it

« Use automated tools to fix issues in existing code

D Software and Societal Carnegie
Systems Department Mellon

Universi

(2) Patten-based Static Analysis Tools SP@{BUQS

o ‘“E“D"r . . .
« Bad Practice My T o Deernen
i 56
2, WOW S This document lists the standard bug patterns reported by FindBugs version 3.0.1
ARYLAS - gmt s
- iy Umimal
FindBugs e
because it's casy” Description Category
Y ‘ O r r e Ct n e S S BC: Equals method should not assume anything about the type of its argument Bad practice
Docs and Info BIT: Check for sign of bitwise operation Bad practice
FPindBuge 2.0 CN; Class implements Cloneable but does not define or use clone method Bad practice
m E :;mm CN: clone method does not call super.clone) Bad practice
e CN: Class defines clone() but doesn’t Cloneable Bad practice
Pact shest CNT: Rough value of known constant found Bad practice
Manual Co: Abstract class defines covariant compareTo() method Bad practice
. o/ B%E] Co: compareTo()/compare() incorrectly handles float or double value Bad practice
i Co: compareTo()/compare() returns IntegeMIN VALUE Bad practice
::9 descriptions g | CoxCovariant compareTo() method defined Bad practice
Pug “""“."’“““”“"“.m,,, DE: Method might drop exception Bad practice
Mailing lists DE: Method might lgnore exception Bad practice
Documents and Publications = DML; Adding elements of an entry set may fail due to reuse of Entry objects Bad practice
[[o Links DMI: Random object created and used only once Bad practice
) DML: Don't use removeAll to clear a collection Bad practice
Downloads sstem) Bad practice
Dm: Method invokes dangerous methed runFinalizersOnExit Bad practice
FindBugs Swag ES: Comparison of String using == or I= Bad practice
ES: Comparison of String objects using == or l= Bad practice
mm ent Eq: Abstract class defines covariant equals() method Bad practice
M M . Reporting bugs Eq: Equals checks for incompatible operand Bad practice
o l I Contributing Eq: Class defines compareTo(...) and uses Object.equals() Bad practice
a I C I O S O e i Eq: equals method fails for subtypes Bad practice
API [no frumes] Eq: Covariant equals() method defined Bad practice
Change log -
e FL: Empty finalizer should be deleted Bad practice
Browse source FL: Explicit invocation of finalizer Bad practice
Latest code changes FL Finalizer nulls fields Bad practice
. FI: Finalizer only nulls fields Bad practice
 Multithreade orrectness S S
FL: Finalizer nullifies superclass finalizer Bad practice
Eﬂaﬂzeﬂggs.ngﬂﬂngw}lexﬂas&ﬂnﬁmgr Bad practice
: Bad practice
GC; Unchecked type in generic call Bad practice
HE: Class defines equals() but not hashCode() Bad practice
M HE: Class defines equals() and uses Object.hashCode(). Bad practice
o e C r' I t HE: Class defines hashCode() but not equals() Bad practice
l I HE: Class defines hashCode() and uses Object.equals() Bad practice
HE: Class inherits equals() and uses Object.hashCode() Bad practice
IC: Superclass uses subclass during initialization Bad practice
Mnmmmqﬂleqmmmmm Bad practice
pplies static methods Bad practice
It: Iterator next() method can't throw NoSuchElementException Bad practice
® O O e J2EE: Store of non serializable object into HitpSession Bad practice
CIP: Fields of immutable classes should be final Bad practice
ME: Public enum method unconditionally sets its field Bad practice

&% "T ™ Software and Societal Carnegle

https://aa!dc&bvsdem ep&rteghtgDescriptions.html Mellon '
Universi

http://findbugs.sourceforge.net/bugDescriptions.html

Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

it (x==y) {

System.out.printIn("x and y are the same!");
}else {

System.out.printIn("x and y are different!");
J

D Software and Societal Carnegie
Systems Department Mellon

Universi

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");
String y = new String("Foo");

if (x.equals(y)) {
System.out.printIn("x and y are the same!");
} else {

System.out.printin("x and y are different!");

}

D Software and Societal Carnegie
Systems Department Mellon

Universi

Performance:

public static String repeat(String string, int times)

{
String output = string;
for (inti=1;i<times; ++i) {
output = output + string;

)

return output;

D Software and Societal Carnegie
Systems Department Mellon

Universi

Performance: SBSC USE STRINGBUFFER CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
String output = string;
for (inti=1;i<times; ++i) {
output = output + string;

. The method seems to be building a String using concatenation in a loop. In each
return OUtpUt’ iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and
} converted back to a String. This can lead to a cost quadratic in the number of

iterations, as the growing string is recopied in each iteration.

D Software and Societal Carnegie
Systems Department

Mellon

Universi

Performance: SBSC USE STRINGBUFFER CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
int length = string.length() * times;
StringBuffer output = new StringBuffer(length);
for (inti=0;i<times; ++i) {
output.append(string);
}

return output.toString();

}

D Software and Societal Carnegie
Systems Department Mellon

Universi

Correctness:

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {
con.open();
} catch (Exception e) {
new SQLException(e);

}

return con;

}

Carnegie
SSD Systems Department https://github.com/pbrunel973/qwics/issues /7 Mellon
Universi

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java

Correctness: Missing “throw"” before “new Exception”

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);

try {
con.open();

} catch (Exception e) {
throw new SQLException(e);

}

return con;

Carnegie
SSD Systems Department https://github.com/pbrunel973/qwics/issues /7 Mellon
Universi

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java

Challenges with pattern-based static analysis

« The analysis must produce zero false positives
« Otherwise developers won't be able to build the code!

« The analysis needs to be really fast
e |deally <100 ms
« |If it takes longer, developers will become irritated and lose productivity

* Practically, this means the analysis needs to focus on “shallow” bugs rather than
verifying some complex logic spanning multiple functions/classes.

« You can'tjust “turn on” a particular check

 Every instance where that check fails will prevent existing code from building
« There could be thousands of violations for a single check across large codebases

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

(3) Use type annotations to detect common errors

 Uses static types to prevent meaningless operations from executing in
the first place (instead of dealing with bad results later)

« Annotations can enhance type system already in the language
« Examples: Java Checker Framework or MyPy

CHECKER @; my[py]

framework

- Carnegie
SS D Software and Societal https://checkerframework.org/ Mellong

Systems Department . .
Universi

Example: Detecting null pointer exceptions

« @Nullable indicates that an // return value

expression may be null @NonNull String toString() { ... }
« @NonNull indicates that an
expression must never be // parameter |
null int compareTo(@NonNull String other)
{..}

« Guarantees that expressions
annotated with @NonNull
will never evaluate to null,
forbids other expressions
from being dereferenced

SS D Software and Societal https://checkerframework.org/manual/#nullness-annotations Car negie

Systems Department Me!lon '
Universi

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

public void example() {
@NonNull String foo = "foo"; @Nullable is applied by

String bar = null; . default
foo = bar; I Error: [assignment.type.incompatible] incompatible types in assignment.
printin(foo.length()); found : @Initialized @Nullable String

required: @Unknownlnitialization @NonNull String

Carnegie

D Software and Societal
Systems Department Me!lon '
Universi

import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
public void example() {
@NonNull String foo = "foo";
String bar = null; // @Nullable

bar is refined to
if (bar !=null) { ~, @NonNull

foo = bar;

}
printin(foo.length());

D Software and Societal Carnegie
Systems Department Mellon

Universi

Another example: Units checker

« Guarantees that operations are performed on the same
kinds and units

e Kind annotations

« @Acceleration, @Angle, @Area, @Current, @Length, @Luminance,
@Mass, @Speed, @Substance, @Temperature, @Time

* S| unit annotation
« @M, @km, @mm, @kg, @mMPERs, @mPERs2, @radians, @A=araac

@A, ... \ ke 4
'S

Yo

SS D Software and Societal https://www.nist.gov/pml/weights-and-measures/metric-si/si-units Cal'negle

Systems Department Me!lon '
Universi

171 e AR PSS A I S T

" MeTRIC, ENGLSH, WHATEVER..."

Remember the Mars Climate Orbiter incident from 1999?

% sIMSEHlE Blog Product « Solutions Learning v Public Projects Case Studies Careers Pricing LogIn Sign Up

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

WRITTEN BY UPDATED ON APPROX READING TIME
Ajay Harish March 10th, 2020 11 Minutes

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA'S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe
launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and
surface changes. In addition, its function was to act as the communications relay in the Mars
Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

33 D Software and Societal https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

Systems Department

Carnegie
Mellon
Universi

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
X=5*m;

@m int meters =5 * m;
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

D Software and Societal Carnegie
Systems Department Mellon

Universi

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; — o
X=5*m;

_ To assign a unit, multiply appropriate
@m int meters =5 * m; unit constant from UnitTools
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

D Software and Societal Carnegle
Systems Department Mellon

Universi

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { @m indicates that x represents meters
@m intx; — o
X=5*m;

_ To assign a unit, multiply appropriate
@m int meters =5 * m; unit constant from UnitTools
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

D Software and Societal Carnegle
Systems Department Mellon

Universi

S

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
X=5%*m;

Addition and subtraction between
meters and seconds is physically
meaningless

@m int meters =5 * m;
@s int seconds =2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

D Software and Societal Carnegle
Systems Department Mellon

Universi

Limitations of Type-based Static Analysis

« Can only analyze code that is annotated
« Requires that dependent libraries are also annotated
« Can be tricky to retrofit annotations into existing codebases

* Only considers the signature and annotations of methods
« Doesn't look at the implementation of methods that are being called

« Can't handle dynamically generated code well
« Examples: Spring Framework, Templates

« Can produce false positives!
« Byproduct of necessary approximations

Carnegie

D Software and Societal
Systems Department Me!lon '
Universi

(Alternative) Infer: Type-checking without the annotations

» Focused on memory safety bugs
* Null pointer dereferences, memory leaks, resource leaks, ...

« Compositional interprocedural reasoning
« Based on separation logic and bi-abduction

 Scalable and fast
« Can run incremental analysis on changed code

» Does not require annotations _ @f " @
» Supports multiple languages

e Java, C, C++, Objective-C

* Programs are compiled to an intermediate representation

Software and Societal Carnegie
Systems Department https://engineering.fb.com/2017/09/06/android/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/ %e!lon .
niversi

https://fbinfer.com/

NULLPTR_DEREFERENCE

Reported as "Nullptr Dereference" by pulse.

Infer reports null dereference bugs in Java, C, C++, and Objective-C when it is possible that the null pointer is dereferenced, leading
to a crash.

Null dereference in Java

Many of Infer's reports of potential Null Pointer Exceptions (NPE) come from code of the form

D Software and Societal Carnegle
Systems Department Me!lon '
Universi

The best QA strategies employ a combination of tools

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib

andrew.a habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

D Software and Societal
Systems Department

Michael Pradel

michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE "18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.32348213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g..
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bues. e.g.. collect information about abnormal runtime

Tool Bugs

Error Prone 8
Infer 5
SpotBugs 18

Total: 31

Total of 27 unique bugs

https://software-lab.org/publications/ase2018 static_bug_detectors_study.pdf

SpotBugs

14

Error Prone

Infer

Figure 4: Total number of bugs found by all three
checkers and their overlap.

static

Carnegie
Mellon
Universi

Which tool to use?

« Depends on use case, available resources
* Linters: Fast, cheap, easy to address issues or setignore rules
- Pattern-based bugs: Intuitive, but need to deal with false positives.

- Type-annotation-based checkers: More manual effort required,;
needs overall project commitment. But good payoff once adopted.

- Deep analysis tools: Can find tricky issues, but can be costly. Might
need some awareness of the analysis to deal with false positives.

* The best QA strategy involves multiple analysis and testing
techniques!

D Software and Societal Carnegle
Systems Department Mellon

Universi

	Slide 1: Software Analysis Tools
	Slide 2: Learning Goals
	Slide 3: Administrivia
	Slide 4: What are Program Analysis Tools?
	Slide 5: Activity: Analyze the Python program statically
	Slide 6: What static analysis can and cannot do
	Slide 7: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 8: Static Analysis is well suited to detecting certain defects
	Slide 9: Static Analysis: Broad classification
	Slide 10: Static analysis can be applied to all attributes
	Slide 11: Activity: Analyze the Python program dynamically
	Slide 12: Dynamic analysis reasons about program executions
	Slide 13: Static Analysis vs Dynamic Analysis
	Slide 14: Static Analysis
	Slide 15: Tools for Static Analysis
	Slide 16: Static analysis is a key part of continuous integration
	Slide 17: Static analysis used to be an academic amusement; now it’s heavily commercialized
	Slide 18: Static analysis is also integrated into IDEs
	Slide 19: What makes a good static analysis tool?
	Slide 20: (1) Linters: Cheap, fast, and lightweight static source analysis
	Slide 21: Use linters to enforce style guidelines
	Slide 22: Linters use very “shallow” static analysis to enforce formatting rules
	Slide 23: Use linters to improve maintainability
	Slide 24: Use Style Guidelines to facilitate communication
	Slide 25: Take Home Message: Style is an easy way to improve readability
	Slide 26: (2) Patten-based Static Analysis Tools
	Slide 27: Bad Practice:
	Slide 28: Bad Practice: ES_COMPARING_STRINGS_WITH_EQ Comparing strings with ==
	Slide 29: Performance:
	Slide 30: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 31: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 32: Correctness:
	Slide 33: Correctness: Missing “throw” before “new Exception”
	Slide 34: Challenges with pattern-based static analysis
	Slide 35: (3) Use type annotations to detect common errors
	Slide 36: Example: Detecting null pointer exceptions
	Slide 37
	Slide 38
	Slide 39: Another example: Units checker
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Does this program compile?
	Slide 44: Does this program compile? No.
	Slide 45: Limitations of Type-based Static Analysis
	Slide 46: (Alternative) Infer: Type-checking without the annotations
	Slide 47
	Slide 48: The best QA strategies employ a combination of tools
	Slide 49: Which tool to use?

