
Software Analysis Tools
17-313 Fall 2024

Foundations of Software Engineering

https://cmu-313.github.io

Michael Hilton and Rohan Padhye

https://cmu-313.github.io/


Learning Goals

• Gain an understanding of the relative strengths and 
weaknesses of static and dynamic analysis

• Examine several popular analysis tools and understand their 
use cases

• Understand how analysis tools are used in large open-source 
software



Administrivia

• Midterm exam next week!
• One page (two-sided) of hand-written notes allowed in class.

• Practice exams released on website.
• Not all topics are the same as previous semesters/years

• Midterm review session tomorrow (Friday, Oct 4th) at 5pm TCS 358
• Read old exams and come with questions or attempts prepared

• Project P2C (Second Sprint + Reflections) due next Thu, Oct 10th



What are Program Analysis Tools?

Static Analysis

Dynamic Analysis



Activity: Analyze the Python program statically

def n2s(n: int, b: int):
  if n <= 0: return '0'
  r = ''
  while n > 0:
    u = n % b
    if u >= 10:
      u = chr(ord('A') + u-10)
    n = n // b
    r = str(u) + r
  return r

1. What is the type of variable `u`?

2. Will the variable `u` be a 
negative number?

3. Will this function always return 
a value?

4. Will the program divide by zero?

5. Will the returned value ever 
contain a minus sign ‘-’?



What static analysis can and cannot do
• Type-checking is well established

• Set of data types taken by variables at any point

• Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g. Python)

• Checking for problematic patterns in syntax is easy and fast
• Is there a comparison of two Java strings using `==`? 
• Is there an array access `a[i]` without an enclosing bounds check for `i`?

• Reasoning about termination is impossible in general
• Halting problem

• Reasoning about exact values is hard, but conservative analysis via abstraction is possible
• Is the bounds check before `a[i]` guaranteeing that `i` is within bounds?
• Can the divisor ever take on a zero value?
• Could the result of a function call be `42`?
• Will this multi-threaded program give me a deterministic result?

• Be prepared for “MAYBE”

• Verifying some advanced properties is possible but expensive
• CI-based static analysis usually over-approximates conservatively



The Bad News: Rice’s Theorem
Every static analysis is necessarily incomplete, unsound, undecidable, or 
a combination thereof

“Any nontrivial property about the language recognized by a Turing 
machine is undecidable.”

7

Henry Gordon Rice, 1953



Static Analysis is well suited to detecting certain defects

• Security:  Buffer overruns, improperly validated input…

• Memory safety:  Null dereference, uninitialized data…

• Resource leaks:  Memory, OS resources…



Static Analysis: Broad classification

• Linters
• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-based bug detectors
• Simple syntax or API-based rules for identifying common 

programming mistakes

• Type-annotation validators
• Check conformance to user-defined types
• Types can be complex (e.g., “Nullable”)

• Data-flow analysis / Abstract interpretation)
• Deep program analysis to find complex error conditions (e.g., ”can 

array index be out of bounds?”)



Static analysis can be applied to all attributes

• Find bugs

• Refactor code

• Keep your code stylish!

• Identify code smells

• Measure quality

• Find usability and accessibility issues

• Identify bottlenecks and improve performance



Activity: Analyze the Python program dynamically

def n2s(n: int, b: int):

  if n <= 0: return '0'

  r = ''
  while n > 0:

    u = n % b
    if u >= 10:
      u = chr(ord('A') + u-10)

    n = n // b
    r = str(u) + r
  return r

print(n2s(12, 10))

1. What is the type of variable `u` 
during program execution?

2. Did the variable `u` ever contain a 
negative number?

3. For how many iterations did the 
while loop execute?

4. Was there ever be a division by 
zero?

5. Did the returned value ever 
contain a minus sign ‘-’?



Dynamic analysis reasons about program 
executions

• Tells you properties of the program that were definitely observed
• Code coverage

• Performance profiling

• Type profiling

• Testing

• In practice, implemented by program instrumentation
• Think “Automated logging”

• Slows down execution speed by a small amount



• Requires only source code

• Conservatively reasons about all possible 
inputs and program paths

• Reported warnings may contain false 
positives

• Can report all warnings of a particular class 
of problems

• Advanced techniques like verification can 
prove certain complex properties, but rarely 
run in CI due to cost

• Requires successful build + test inputs 

• Observes individual executions

• Reported problems are real, as observed by a 
witness input

• Can only report problems that are seen. Highly 
dependent on test inputs. Subject to false 
negatives

• Advanced techniques like symbolic execution 
can prove certain complex properties, but 
rarely run in CI due to cost

Static Analysis vs Dynamic Analysis



Static Analysis



Tools for Static Analysis



Static analysis is a key part of continuous integration



Static analysis used to be an academic amusement; now 
it’s heavily commercialized

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

https://github.com/marketplace

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/


Static analysis is also integrated into IDEs

https://clang-analyzer.llvm.org



What makes a good static analysis tool?

• Static analysis should be fast

• Don’t hold up development velocity

• This becomes more important as code scales

• Static analysis should report few false positives

• Otherwise developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous

• Should be part of your continuous integration pipeline

• Diff-based analysis is even better -- don’t analyze the entire codebase; just the changes

• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue

• Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext



(1) Linters: Cheap, fast, and lightweight static source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important



Use linters to enforce style guidelines

Don’t rely on manual inspection during code review!

https://checkstyle.sourceforge.io/



Linters use very “shallow” static analysis 
to enforce formatting rules
• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?



Use linters to improve maintainability

• Why? We spend more time reading code than writing it. 
• Various estimates of the exact %, some as high as 80%

• Code is ownership is usually shared

• The original owner of some code may move on

• Code conventions make it easier for other developers to 
quickly understand your code



Use Style Guidelines to facilitate communication

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Guidelines are inherently opinionated, but consistency is the important point.

Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008


Take Home Message:

Style is an easy way to improve readability

• Everyone has their own opinion (e.g., tabs vs. spaces)

• Agree to a convention and stick to it
• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code



(2) Patten-based Static Analysis Tools

• Bad Practice

• Correctness

• Performance

• Internationalization

• Malicious Code

• Multithreaded Correctness

• Security

• Dodgy Code

http://findbugs.sourceforge.net/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html


Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
System.out.println("x and y are the same!");

} else {
System.out.println("x and y are different!");

}



Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
if (x.equals(y)) {
System.out.println("x and y are the same!");

} else {
System.out.println("x and y are different!");

}



Performance:

public static String repeat(String string, int times)
{
String output = string;
for (int i = 1; i < times; ++i) {
output = output + string;

}
return output;

}



Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

The method seems to be building a String using concatenation in a loop. In each 
iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and 
converted back to a String. This can lead to a cost quadratic in the number of 
iterations, as the growing string is recopied in each iteration. 

public static String repeat(String string, int times)
{
String output = string;
for (int i = 1; i < times; ++i) {
output = output + string;

}
return output;

}



Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

public static String repeat(String string, int times)
{
int length = string.length() * times;
StringBuffer output = new StringBuffer(length);
for (int i = 0; i < times; ++i) {
output.append(string);

}
return output.toString();

}



Correctness:

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdb c/QwicsXid.java
https://github.com/pbrune1973/qwics/issues/7

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {
con.open();

} catch (Exception e) {
new SQLException(e);

}
return con;

}

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java


Correctness: Missing “throw” before “new Exception”

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdb c/QwicsXid.java
https://github.com/pbrune1973/qwics/issues/7

@Override
public Connection getConnection() throws SQLException {
QwicsConnection con = new QwicsConnection(host, port);
try {
con.open();

} catch (Exception e) {
throw new SQLException(e);

}
return con;

}

https://github.com/pbrune1973/qwics/blob/3b4ec904468eaed89ea890b5ae97ebaaa8e4a3e6/workspace/QwicsJDBCDriver/src/org/qwics/jdbc/QwicsXid.java


Challenges with pattern-based static analysis

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms

• If it takes longer, developers will become irritated and lose productivity

• Practically, this means the analysis needs to focus on “shallow” bugs  rather than 
verifying some complex logic spanning multiple functions/classes.

• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent existing code from building

• There could be thousands of violations for a single check across large codebases



(3) Use type annotations to detect common errors

• Uses static types to prevent meaningless operations from executing in 
the first place (instead of dealing with bad results later)

• Annotations can enhance type system already in the language

• Examples: Java Checker Framework or MyPy

https://checkerframework.org/



Example: Detecting null pointer exceptions

• @Nullable indicates that an 
expression may be null

• @NonNull indicates that an 
expression must never be 
null

• Guarantees that expressions 
annotated with @NonNull 
will never evaluate to null, 
forbids other expressions 
from being dereferenced

https://checkerframework.org/manual/#nullness-annotations

// return value
@NonNull String toString() { ... }

// parameter
int compareTo(@NonNull String other) 
{ ... }



import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {
    public void example() {
        @NonNull String foo = "foo";

        String bar = null;
        foo = bar;

        println(foo.length());

    }

}

@Nullable is applied by 
default

Error: [assignment.type.incompatible] incompatible types in assignment.
found   : @Initialized @Nullable String
required: @UnknownInitialization @NonNull String



import org.checkerframework.checker.nullness.qual.*;

public class NullnessExampleWithWarnings {

  public void example() {

    @NonNull String foo = "foo";

    String bar = null;   // @Nullable

    if (bar != null) {

      foo = bar;

    }

    println(foo.length());

  }

}

bar is refined to 
@NonNull



Another example: Units checker

• Guarantees that operations are performed on the same 
kinds and units

• Kind annotations
• @Acceleration, @Angle, @Area, @Current, @Length, @Luminance, 

@Mass, @Speed, @Substance, @Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, @degrees, 

@A, ...

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units



https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy 
between use of metric unit Newtons and imperial measure Pound-force.



4
1

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}



4
2

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

@m indicates that x represents meters

To assign a unit, multiply appropriate 
unit constant from UnitTools



Does this program compile?

4
3

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

@m indicates that x represents meters

To assign a unit, multiply appropriate 
unit constant from UnitTools



Does this program compile? No.

4
4

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
x = 5 * m;

@m int meters = 5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

}

Addition and subtraction between 
meters and seconds is physically 
meaningless



Limitations of Type-based Static Analysis

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated

• Can be tricky to retrofit annotations into existing codebases

• Only considers the signature and annotations of methods

• Doesn’t look at the implementation of methods that are being called

• Can’t handle dynamically generated code well
• Examples: Spring Framework, Templates

• Can produce false positives!
• Byproduct of necessary approximations



(Alternative) Infer: Type-checking without the annotations

• Focused on memory safety bugs
• Null pointer dereferences, memory leaks, resource leaks, ...

• Compositional interprocedural reasoning
• Based on separation logic and bi-abduction

• Scalable and fast
• Can run incremental analysis on changed code

• Does not require annotations

• Supports multiple languages
• Java, C, C++, Objective-C
• Programs are compiled to an intermediate representation

4
6

https://fbinfer.com/
https://engineering.fb.com/2017/09/06/android/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/

https://fbinfer.com/




The best QA strategies employ a combination of tools

4
8

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf



Which tool to use?

• Depends on use case, available resources

• Linters: Fast, cheap, easy to address issues or set ignore rules

• Pattern-based bugs: Intuitive, but need to deal with false positives.

• Type-annotation-based checkers: More manual effort required; 
needs overall project commitment. But good payoff once adopted.

• Deep analysis tools: Can find tricky issues, but can be costly. Might 
need some awareness of the analysis to deal with false positives.

• The best QA strategy involves multiple analysis and testing 
techniques!


	Slide 1: Software Analysis Tools
	Slide 2: Learning Goals
	Slide 3: Administrivia
	Slide 4: What are Program Analysis Tools?
	Slide 5: Activity: Analyze the Python program statically
	Slide 6: What static analysis can and cannot do
	Slide 7: The Bad News: Rice’s Theorem Every static analysis is necessarily incomplete, unsound, undecidable, or a combination thereof
	Slide 8: Static Analysis is well suited to detecting certain defects
	Slide 9: Static Analysis: Broad classification
	Slide 10: Static analysis can be applied to all attributes
	Slide 11: Activity: Analyze the Python program dynamically
	Slide 12: Dynamic analysis reasons about program executions
	Slide 13: Static Analysis vs Dynamic Analysis
	Slide 14: Static Analysis
	Slide 15: Tools for Static Analysis
	Slide 16: Static analysis is a key part of continuous integration
	Slide 17: Static analysis used to be an academic amusement; now it’s heavily commercialized
	Slide 18: Static analysis is also integrated into IDEs
	Slide 19: What makes a good static analysis tool?
	Slide 20: (1) Linters: Cheap, fast, and lightweight static source analysis
	Slide 21: Use linters to enforce style guidelines
	Slide 22: Linters use very “shallow” static analysis to enforce formatting rules
	Slide 23: Use linters to improve maintainability
	Slide 24: Use Style Guidelines to facilitate communication
	Slide 25: Take Home Message: Style is an easy way to improve readability
	Slide 26: (2) Patten-based Static Analysis Tools
	Slide 27: Bad Practice:
	Slide 28: Bad Practice: ES_COMPARING_STRINGS_WITH_EQ Comparing strings with ==
	Slide 29: Performance:
	Slide 30: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 31: Performance: SBSC_USE_STRINGBUFFER_CONCATENATION Method concatenates strings using + in a loop
	Slide 32: Correctness:
	Slide 33: Correctness: Missing “throw” before “new Exception”
	Slide 34: Challenges with pattern-based static analysis
	Slide 35: (3) Use type annotations to detect common errors
	Slide 36: Example: Detecting null pointer exceptions
	Slide 37
	Slide 38
	Slide 39: Another example: Units checker
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Does this program compile?
	Slide 44: Does this program compile? No.
	Slide 45: Limitations of Type-based Static Analysis
	Slide 46: (Alternative) Infer: Type-checking without the annotations
	Slide 47
	Slide 48: The best QA strategies employ a combination of tools
	Slide 49: Which tool to use?

