QA: Dynamic Analysis
& Advanced Testing

17-313 Fall 2024
Foundations of Software Engineering
https://cmu-313.github.io
Michael Hilton and Rohan Padhye

Carnegie

Mellon
University

https://cmu-313.github.io/

Administrivia

e P3 due Thursday, Oct 315t
* Still facing deployment issues? See Slack or come to OH

* Tools not passing Cl with green checkmark?
* Firsttry to find ways to fix or suppress warnings and
document those in the design doc
* Otherwise, submit link to workflow where tool runs
successfully even if there is a red cross for unfixed warnings
and justify in the design doc (see: “integration” section)

« Next Thursday: Guest lecture

Smoking Section

e L ast two full rows

DESIGNATED
SMOKING
AREA

Learning Goals

Describe random test-input generation strategies such as
fuzz testing

|dentify and discuss the key challenges associated with
performance testing in software development.
Understand the ideas behind chaos engineering and how
it is used to test resiliency of cloud-based applications
Describe A/B testing for usability

Recommend appropriate dynamic analysis techniques for
specific software quality issues.

Software and Societa I'[ﬁi““-gw
Systems Department ivlethon

University

Recap: Program Analysis Tools

src/controllersfaccounts/posts.js (G

136 1.

137 L

138 b

139

148 postsController.getBooknarks = async function (req, res, next) {

181 await getPostsFromserSet('account/bookmarks', req, res, @ next);

This function expects 3 arguments, but 4 were provided.

142 . i3
143
144 postsController.getPosts = async function (req, res, next) {
145 - . await getPostsFronUserSet('account/posts’, req, res, next);
146 _ i3
S
COVERALLS 66 Auth.relosdhoutes = async functioa (parans) (
6 ToginStrategles. length = 0;
o8 const { router } = paras
6
*
70
* n 41 (plugins. hooks. hasListeners (*action:auth.overrideLogin')) {
7 winston.warn(* [authentication] Lopin override detected, skipping \c
) togin strategy.");
7 plugins. hooks. fire(*act ton:auth. overridelogin
L

7) else ¢

Dynamic Analysis . ey

controllers. authent ication, locallogin)) ;

%)

7 passport.use(‘core.api’, new BearerStrategy({}, Auth.verifyToken));

8 try
& loginstrategies = await plugins.hooks. fire(*filtersautn. init",
loginstrategies);

s) caten (err) (
8 winston.error(’ [suthentication] slerr.stack)’);
8)

@ loginstrategies = loginstrategies || [1;

5 loginStrategies. forEach((strategy) = {

Carneg

Mellon
University

Automated Analysis for Functional and Non-
Functional Properties

o Correctness - Static Analysis and Testing
« Robustness - Fuzzing

« Performance - Profiling

« Scalability - Stress testing

« Resilience - Soak testing

« Reliability - Chaos Engineering

« Usability - A/B testing

Carnegie

Mellon
University

Automated Analysis for Functional and Non-
Functional Properties

« Correctness - Static Analysis and Testing
« Robustness - Fuzzing

« Performance - Profiling

. Scalability - Stress testing

« Resilience - Soak testing

« Reliability - Chaos Engineering

« Usability - A/B testing

Carnegie

Mellon
University

Outline

* Fuzz Testing
» Performance Testing and Debugging
« Testing in Production

» Reliability: Chaos Engineering

» GUI and Usability: A/B Testing

Carnegie

Mellon
University

Security and Robustness

Barim I Miller. Lars Fredriksen asdl Bryan S

St"dy OF the “ On a
Reliubility oF dark and stormy night one of the
authors was logged on to his work-

T - station on a dial-up line from home
and the rain had affected the

phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-

- - - "

utllltles acters were causing programs to
crash.

r— o " , ,

Communications of the ACM (1990)
How to identify these bugs?

Carnegie

Software and Societa Mell
Systems Department ¥l nn.‘_

Infinite monkey theorem

“a monkey hitting keys at random on a typewriter keyboard for
an infinite amount of time will almost surely type any given text,
including the complete works of William Shakespeare. “

https://en.wikipedia.org/wiki/Infinite_monkey_theorem

Software and Societa Carnegie
83 ST Mellon
University

Systems Department

Fuzz Testing

0
/devirandom [&EM’ Program

!

re and Societa

s Department

A 1990 study found crashes in:

adb, as, bc, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

Ca rnegie
Mellon

University

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting,
executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-
after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Carnegie

Software and Societa Mellon
Systems Department LAE LU
: University

Mutation-Based Fuzzing (e.g. Radamsa)

Coverage-Guided Fuzzing (e.g. AFL)

Initial

Seeds

Add
Input

are and Societa

ms Department

New branch
coverage?

Mutation

Execution feedback

Program

I <

Coverage
Instrume ntation

{-:urm‘f_{ ie
Mellon
University

Mutation Heuristics

" Blnary input
Bit flips, byte flips
Change random bytes
Insert random byte chunks
Delete random byte chunks

Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, ...
= Textinput
» Insertrandom symbols relevant to format (e.g. “<" and “>" for xm])
» Insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml)

= GUIlinput

Change targets of clicks

Change type of clicks

Select different buttons

Change text to be entered in forms
* ... Much harder to design

S0 fv:.a jare and Societa { dl."tll....ll

Mellon
gpartmemnt
P University

Fuzzing in practice

« Google uses ClusterFuzz to fuzz all Google products
« Supports multiple fuzzing strategies
« “Asof February 2023, ClusterFuzz has found ~27,000 bugs
in Google (e.g. Chrome).”
* Morethan 50% of all bugs in the database

« Many bugs can also be fixed automatically
* Continuous fuzzing and fixing

« New: Fuzz-driven development

Software and Societa %fii’lll{‘f.f.’ 1e
Systems Department ivlethon

University

Activity:
Pick one scenario based on where you are seating

E-Commerce Web Application (front rows)
Automotive Software for Self-Driving Cars (middle rows)
Mobile Gaming Application (back rows)

Discuss in groups of 2-3 the applicability of fuzz testing in your scenario,
considering:

Types of inputs to fuzz.

Potential vulnerabilities or bugs fuzz testing might uncover.

Specific challenges in implementing fuzz testing for the scenario.

Bonus: How fuzz testing could be integrated into the development cycle
for that particular application?

Software and Societa I'[ﬁi““-g 1e
Systems Department ivlethon

University

Performance Testing and
Debugging

Performance testing: challenging requirements

« Goal: Identify performance bugs. What are these?
- Unexpected bad performance on some subset of inputs
- Performance degradation over time
- Difference in performance across versions or platforms

« Not as easy as functional testing. What's the baseline?

. Fast = good, slow = bad // but what's the threshold?
- How to get reliable measurements?
- How to debug where the issue lies?

Software and Societa Carnegie
83 Mellon

Systems Department = .
4 P University

Performance regression testing identifies trends

« Measure execution time of critical components
« Log execution times and compare over time

Job 12e96643840000

e BB E - Ay e DenhT R

Differences found after commits

P ripcre Rcctinyg chealtSog ndory it by .
C) ————F
-0
JO ArGUImEnts
Ry o e)
el e Tirm SaFeubioasrgiuiPant _F-“"H-'"____"x
conbigurstion. chromaum-rp-mact g - — | “*-\-.._‘_H-;_____.
Fadigig ae)
mery Patp
[— Fia-Foorl Kacing Seakiog Sy el
e T
e P Builc Test Values
]
ANEEEEEEEEEENEENEEEE EEENEEENEEENEENEEEEE EEEEEEEENEEEEEEEEEEN
besildar L Thodider taa_M Toaspadbepaa T TED Partip_01-0E- 54 _ 1183
" Ty e him
. i die Tine 1 b0 TBeaEI0h Bol M i ad
gl =TT . _ s, P 200800041185
N em-w{ SRR | &3 37 i

Software and Societa '1['1' i ?Lli'lﬂl.‘_‘l 1
Sy ns Departrment Mellon

University

Performance bugs are “bad” bugs

Discovering, Reporting, and Fixing
Performance Bugs

¢ - 2 R
Adrian Nistor', Tian Jiang®, and Lin Tan®
"Wniversity of llinois at Urbana-Champaign, *University of Waterloo
mistor | @illinois.edu, {2jiang, lintan) @ uwaterloo.ca

- Fixing performance bugs is usually more difficult than fixing non-
performance bugs

- Performance bugs usually don't generate incorrect results or
crashes

- Difficult to diagnose:
- system load, hardware configuration, network conditions, user-specific
workflows, interactions with other systems

- Bigimpact on user experience

Software and Societa %ﬁ“wﬁ 1€
Systems Department vielon

University

Profiling and tracing

« Profiling is a process to analyze and measure the performance of a
program or specific parts of its code (e.g., functions).
« Tracing is about understanding the flow of execution and the
behavior of a program.
Record sequential events (function calls) that occur during the
execution of a program
« Both can be used to identify bottlenecks in execution time and
memory

Software and Societa %fii’lll{‘f.f.’ 1e
Systems Department Mellon
' University

Performance analysis via
instrumentation

« Embedding additional code to monitor the program's behavior

+ Usage:

* Source Code (Static): Additional instructions for data
collection.

« Binary Files (Dynamic): Inserting monitoring code at
runtime without altering the source.

« Applications:

« Profiling: Execution time, function call frequency, and
resource usage.

« Tracing: Record detailed execution flow, tracking function

entries/exits and event sequences.
Carnegie

Software and Societa Mellon
Systems Department e

University

Flame Graphs

T h e FIGURE 3: FULL MYSQL DTRACE PROFILE OUTPUT

Flame Graph

THIS
VISUALIZATION
OF SOFTWARE
EXECUTION n everyday problem in our industry is understanding

IS A NEW
NECESSITY FOR
PERFORMANCE

how software is consuming resources, particularly
CPUs. What exactly is consuming how much, and
how did this change since the last software version?

Software and Societa '1[“‘ 1‘“ 1egie
Systems Department e

ll

Flame Graphs

FIGURE 3: FULL MYSQL DTRACE PROFILE OUTPUT

Flame Gragh

Software and Societa !‘i 'L'i']' 1egie
ssD Systems Department SR

University

How to read a Flame Graph?

e Top edges of the flame
graph show the functions
that were running on when
the stack trace was collected

e Top down shows ancestry

e Box width proportional to
presence in stack traces

Software and Societa !\ii‘“ 1egie
Systems Department ST AR W

University

Profilers often included in IDEs

S RARE s OR

Software and Societa I'[ﬁi““-gw
Systems Department AYRENEOIL |
: University

Domain-Specific Perf Testing
(e.g. JMeter for Java web apps)

Software and Societa Ca rnegie
ss D Mellon

Systems Department Uni ity
JImversity

http://jmeter.apache.org/

Stress testing

S3

Scalability/Robustness testing technique: test beyond the
limits of normal operation.

Can apply at any level of system granularity.

Key idea: throw large amounts of input / requests and see
how the program behaves

Often a way to test the error-handling capabilities of the
application

Software and Societa %fii’lll{‘f.f.’ 1e
Systems Department Mellon
' University

Real Issues: Disney+ Launch

e Lots of issues reported on launch day.
e Disney had planned for a spike in traffic.
Tested massive concurrent video streaming capability.

e BUT: the stress was in paths other than streaming
User account creation —
Logins and auth :

Browsing old titles u

Software and Societa Carnegie
Systems Department Mellon

University

Soak testing

« A system may behave exactly as expected under controlled

test conditions but fail in production after extended use.
. E.g., Memory leaks may take longer to lead to failure

« Soak testing a system involves applying a load over a
significant period of time and observing system resilience.

« Time-consuming to run but useful to apply at big release
milestones or when making infrastructure changes.

Software and Societa
Systems Department

Carnegie
Mellon
University

Activity:

Pick one scenario based on where you are seating

E-Commerce Web Application (front rows)
Automotive Software for Self-Driving Cars (middle rows)
Mobile Gaming Application (back rows)

Discuss in groups of 2-3:

- Enumerate specific performance challenges in the your scenario.
« Pick one dynamic analysis technique to address some of these
challenges.

Software and Societa Carnegie
83 ST Mellon

Systems Department = .
: P University

Testing in Production

Reliability testing

« What happens when some components of a large complex
system fail? Can the system recover and keep working?

« How can you test the reliability of something as complex as
Netflix or Google maps or Instagram?

« Oneidea: simulate a large-scale deployment and induce
random failures in various components
Test in Production with Chaos Engineering
« Another idea...

Software and Societa I'[ﬁi““-gw
Systems Department ivlethon

University

What is chaos engineering?

e "Chaos Engineering is the discipline of experimenting
on a system in order to build confidence in the system's
capability to withstand turbulent conditions in
production.”

principlesofchaos.org

Carnegie

Mellon
University

Chaos Engineering: Testing in Production

Purposefully take down components in a live deployment.

Observe system response. Do failovers work correctly?

Tests the failure-handling and fallback capabilities of large
systems.

Useful in preparing for natural disasters or cyberattacks.

Carnegie

Mellon
University

Example: Google

Terminate network in Sao Paulo for testing:
- Hidden dependency takes down links in Mexico which would
have remained undiscovered without testing

Turn off data center to find that machines won't come back:
- Ran out of DHCP leases (for IP address allocation) when a
large number of machines come back online unexpectedly.

Software and Societa Carnegie
83 Mellon

Systems Department = .
: P University

Why would you break things on purpose?

Carnegie
Mellon
University

Example: Netflix

Significant deployment on AWS cloud. Hundreds of
updates to microservices and infrastructure
through the day.

Chaos Monkey randomly takes down AWS
instances or network connections or randomly
changes config files.

[

H OW to tel I ,,a re We Sti | | go O d?’, LEE L - 2R IJ1.]:' W30 Oras (L] 1245 1500
Key m etri C: Strea m Sta rtS p er Seco n d (S PS) FIGURE 2. A graph of SPS (piream)| atarts Do sacond) over & 24-howr panod. This
Measures availability e e i it rane ot

ss Software and Societa Carnegie

iyt S Mellon
Systems Department B .
: P University

Testing GUIs and Usability

Automating GUI/Web Testing is Hard

S3

Capture and Replay Strategy
- mouse actions
y system events

Test Scripts:
e click on button labeled "Start" expect value X in field Y

Lots of tools and frameworks
. e.g. Selenium for browsers

Can avoid load on GUI testing by separating model from GUI
Beyond functional correctness?

Software and Societa
Systems Department

Carnegie
Mellon
University

Usability: A/B testing

« Controlled randomized experiment with two variants, A
and B, which are the control and treatment.

« One group of users given A (current system); another
random group presented with B; outcomes compared.

« Often used in web or GUI-based applications, especially to
test advertising or GUI element placement or design
decisions.

Software and Societa Carnegie
83 Mellon

Systems Department - .
: P University

Example

« A company sends an advertising email to its customer
database, varying the photograph used in the ad...

Software and Societa %‘flﬁ“‘g e
Systems Department ST AR W

University

Example: group A (99% of users)
r:‘ ‘ :" -

Act now!

Example: group B (1%)

Act now!
" Sale ends soon!

Carnegie

Mellon
University

wes v wa e A on -

DINg | towes »

Bing Experiment

'Imnv £ Gfs a2 1200 FLOWERS 100% Sevde Guararsee Shog Now
TDS - Flmﬂ

Ko 1(;M~ o $19 00

. Experiment: Ad Display at Bing »~ S

- Suggestion prioritized low “”'"ﬁ:‘ "‘j’ s

. Notimplemented for 6 months

. Ran A/B test in production oing "- S, S

- Within 2h revenue-too-high alarm triggered = M.
suggesting serious bug (e.g., double billing) m e

Fr\hﬂu-'v £ Gits o1 1800 FLOWERS $00% SmisiDewantss Shes Now

- Revenue increase by 12% - $100M annually in US s
- Did not hurt user-experience metrics e

$19.99 Chowp Flowers - Dy oy By ALccel Florsd
o | Y suflowers Coe

Shop Now & Save 55 nstanty

Kohavi, Ron, Diane Tang, and Ya Xu. "Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing." 2020.

Carnegie
Mellon
University

Software and Societa

Systems Department

The power of online experimentation

The Growth of Experimentation at Bing

350

300
ey Growth takes off once
SW o the experimentation
3 platform allgws a user
B e to take part in multiple
& a 200 experiments at the
~ = same time, supporting
W& 150 virtually unlimited
W concurrent tests
Q. 5 "
& 100 ~
U’- "illqr'l

50 "1'v v
| N\ " '
| AN ”
0
2008 2009 2010 2011 2012 2013 2014

FROM “THE SURPRISIN YWER OF ONLINE EXPERIMENTS,”
SEPTEMBER-OCTOBER 8Y RON KOHAVI AND STEFAN THOMKE > HBR.ORG

Software and Societa '1[“‘ 'L'i']' 1egie
Systems Department yletion

University

Learning Goals

Describe random test-input generation strategies such as
fuzz testing

|dentify and discuss the key challenges associated with
performance testing in software development.
Understand the ideas behind chaos engineering and how
it is used to test resiliency of cloud-based applications
Describe A/B testing for usability

Recommend appropriate dynamic analysis techniques for
specific software quality issues.

Software and Societa I'[ﬁi““-gw
Systems Department ivlethon

University

	Slide 1: QA: Dynamic Analysis & Advanced Testing
	Slide 2: Administrivia
	Slide 3: Smoking Section
	Slide 4: Learning Goals
	Slide 5: Recap: Program Analysis Tools
	Slide 6: Automated Analysis for Functional and Non-Functional Properties
	Slide 7: Automated Analysis for Functional and Non-Functional Properties
	Slide 8: Outline
	Slide 9: Security and Robustness
	Slide 10
	Slide 11: Infinite monkey theorem
	Slide 12: Fuzz Testing
	Slide 13: Common Fuzzer-Found Bugs in C/C++
	Slide 14: Mutation-Based Fuzzing (e.g. Radamsa)
	Slide 15: Coverage-Guided Fuzzing (e.g. AFL)
	Slide 16: Mutation Heuristics
	Slide 17: Fuzzing in practice
	Slide 20: Activity:
	Slide 21: Performance Testing and Debugging
	Slide 22: Performance testing: challenging requirements
	Slide 23: Performance regression testing identifies trends
	Slide 24: Performance bugs are “bad” bugs
	Slide 26: Profiling and tracing
	Slide 27: Performance analysis via instrumentation
	Slide 28: Flame Graphs
	Slide 29: Flame Graphs
	Slide 30: How to read a Flame Graph?
	Slide 31: Profilers often included in IDEs
	Slide 32: Domain-Specific Perf Testing (e.g. JMeter for Java web apps)
	Slide 33: Stress testing
	Slide 34: Real Issues: Disney+ Launch
	Slide 35: Soak testing
	Slide 36: Activity:
	Slide 37: Testing in Production
	Slide 38: Reliability testing
	Slide 39: What is chaos engineering?
	Slide 40: Chaos Engineering: Testing in Production
	Slide 41: Example: Google
	Slide 42: Why would you break things on purpose?
	Slide 43: Example: Netflix
	Slide 44: Testing GUIs and Usability
	Slide 45: Automating GUI/Web Testing is Hard
	Slide 46: Usability: A/B testing
	Slide 47: Example
	Slide 48: Example: group A (99% of users)
	Slide 49: Example: group B (1%)
	Slide 50: Bing Experiment
	Slide 51: The power of online experimentation
	Slide 52: Learning Goals

